Reinforcement Learning vs. Gradient-Based Optimisation for Robust Energy Landscape Control of Spin-1/2 Quantum Networks

CDC(2021)

引用 3|浏览2
暂无评分
摘要
We explore the use of policy gradient methods in reinforcement learning for quantum control via energy landscape shaping of XX-Heisenberg spin chains in a model agnostic fashion. Their performance is compared to finding controllers using gradient-based L-BFGS optimisation with restarts, with full access to an analytical model. Hamiltonian noise and coarse-graining of fidelity measurements are considered. Reinforcement learning is able to tackle challenging, noisy quantum control problems where L-BFGS optimization algorithms struggle to perform well. Robustness analysis under different levels of Hamiltonian noise indicates that controllers found by reinforcement learning appear to be less affected by noise than those found with L-BFGS.
更多
查看译文
关键词
reinforcement learning,noisy quantum control problems,Hamiltonian noise,gradient-based optimisation,robust energy landscape control,policy gradient methods,XX-Heisenberg spin chains,L-BFGS optimisation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要