Intense Overpressurization At Basaltic Open-Conduit Volcanoes As Inferred By Geochemical Signals: The Case Of The Mt. Etna December 2018 Eruption

SCIENCE ADVANCES(2021)

引用 15|浏览22
暂无评分
摘要
The balance between the amount of gas coexisting with mantle-derived magmas at depth and that emitted during intereruptive phases may play a key role in the eruptive potential of volcanoes. Taking the December 2018 eruption at Mt. Etna volcano as a case study, we discuss the geochemical data streams observed. The signals indicate a long-lasting prelude stage to eruption, starting in 2017 and involving magma-fluid accumulation in the deep (>7 km bsl) reservoir, followed by pressure buildup in the system at intermediate depth (5 to 2 km bsl), 6 to 7 months before the eruption. A brief preeruptive phase marks the pressurization at 2 to 3 km below the craters. By comparing the magma and fluid recharge at depth to the measured volcanic degassing from the plume, we provide evidence that Mt. Etna was in a state of extreme overpressurization in the weeks before the onset of the eruption.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要