Effective Inhibition Of Clostridioides Difficile By The Novel Peptide Cm-A

PLOS ONE(2021)

引用 1|浏览5
暂无评分
摘要
Clostridioides difficile infection is the most common cause of nosocomial and antibiotic-associated diarrhea. C. difficile treatment is increasingly likely to fail, and the recurrence rate is high. Antimicrobial peptides are considered an alternative treatment for many infectious diseases, including those caused by antibiotic resistant bacteria. In the present study, we identified a CM peptide, a hybrid of cecropin A and melittin, and its derivative which possesses potent antimicrobial activity against C. difficile strain 630. CM peptide exhibited antibacterial activity with minimum inhibitory concentration of 3.906 mu g/ml (2.21 mu M). A modified derivative of CM, CM-A, exhibited even greater activity with a minimum inhibitory concentration of 1.953 mu g/ml (1.06 mu M) and a minimum bactericidal concentration of 7.8125 mu g/ml (4.24 mu M), which indicates that CM-A peptide is more efficient than its parent peptide. A fluorescence-activated cell sorter analysis revealed that the membrane of C. difficile 630 could be an important target for CM-A. This peptide induced high levels of cell depolarization and cell permeability on C. difficile cell membrane. Moreover, electron microscopy imaging showed that CM-A interferes with the C. difficile cell membrane. Hence, the antimicrobial peptide CM-A may represent a promising novel approach for the treatment of C. difficile infections.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要