Attack Mitigation of Hardware Trojans for Thermal Sensing via Micro-ring Resonator in Optical NoCs

ACM Journal on Emerging Technologies in Computing Systems(2021)

引用 2|浏览9
暂无评分
摘要
AbstractAs an emerging role in new-generation on-chip communication, optical networks-on-chip (ONoCs) provide ultra-high bandwidth, low latency, and low power dissipation for data transfers. However, the thermo-optic effects of the photonic devices have a great impact on the operating performance and reliability of ONoCs, where the thermal-aware control with accurate measurements, e.g., thermal sensing, is typically applied to alleviate it. Besides, the temperature-sensitive ONoCs are prone to be attacked by the hardware Trojans (HTs) covertly embedded in the counterfeit integrated circuits (ICs) from the malicious third-party vendors, leading to performance degradation, denial-of-service (DoS), or even permanent damages. In this article, we focus on the tampering and snooping attacks during the thermal sensing via micro-ring resonator (MR) in ONoCs. Based on the provided workflow and attack model, a new structure of the anti-HT module is proposed to verify and protect the obtained data from the thermal sensor for attacks in its optical sampling and electronic transmission processes. In addition, we present the detection scheme based on the spiking neural networks (SNNs) to implement an accurate classification of the network security statuses for further high-level control. Evaluation results indicate that, with less than 1% extra area of a tile, our approach can significantly enhance the hardware security of thermal sensing for ONoC with trivial costs of up to 8.73%, 5.32%, and 6.14% in average latency, execution time, and energy consumption, respectively.
更多
查看译文
关键词
Hardware security, Thermal sensing, Network-on-chip, Micro-ring resonator, Trojan, Neural network
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要