Lifetime effects and satellites in the photoelectron spectrum of tungsten metal

PHYSICAL REVIEW B(2022)

引用 7|浏览33
暂无评分
摘要
Tungsten (W) is an important and versatile transition metal and has a firm place at the heart of many technologies. A popular experimental technique for the characterization of tungsten and tungsten-based compounds is x-ray photoelectron spectroscopy (XPS), which enables the assessment of chemical states and electronic structure through the collection of core level and valence band spectra. However, in the case of tungsten metal, open questions remain regarding the origin, nature, and position of satellite features that are prominent in the photoelectron spectrum. These satellites are a fingerprint of the electronic structure of the material and have not been thoroughly investigated, at times leading to their misinterpretation. The present work combines high-resolution soft and hard x-ray photoelectron spectroscopy (SXPS and HAXPES) with reflected electron energy loss spectroscopy (REELS) and a multitiered ab initio theoretical approach, including density functional theory (DFT) and many-body perturbation theory (G0W0 and GW + C), to disentangle the complex set of experimentally observed satellite features attributed to the generation of plasmons and interband transitions. This combined experiment-theory strategy is able to uncover previously undocumented satellite features, improving our understanding of their direct relationship to tungsten's electronic structure. Furthermore, it lays the groundwork for future studies into tungsten-based mixed-metal systems and holds promise for the reassessment of the photoelectron spectra of other transition and post-transition metals, where similar questions regarding satellite features remain.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要