Decoding Electrophysiological Signals with Organic Electrochemical Transistors

MACROMOLECULAR BIOSCIENCE(2021)

引用 7|浏览2
暂无评分
摘要
The organic electrochemical transistor (OECT) has unique characteristics that distinguish it from other transistors and make it a promising electronic transducer of biological events. High transconductance, flexibility, and biocompatibility render OECTs ideal for detecting electrophysiological signals. Device properties such as transconductance, response time, and noise level should, however, be optimized to adapt to the needs of various application environments including in vitro cell culture, human skin, and inside of a living system. This review includes an overview of the origin of electrophysiological signals, the working principles of OECTs, and methods for performance optimization. While covering recent research examples of the use of OECTs in electrophysiology, a perspective is provided for next-generation bioelectric sensors and amplifiers for electrophysiology applications.
更多
查看译文
关键词
electrophysiology, organic bioelectronics, organic electrochemical transistor, PEDOT, PSS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要