Probing Light-Induced Conical Intersections by Monitoring Multidimensional Polaritonic Surfaces.

JOURNAL OF PHYSICAL CHEMISTRY LETTERS(2022)

引用 10|浏览2
暂无评分
摘要
The interaction of a molecule with the quantized electromagnetic field of a nanocavity gives rise to light-induced conical intersections between polaritonic potential energy surfaces. We demonstrate for a realistic model of a polyatomic molecule that the time-resolved ultrafast radiative emission of the cavity enables following both nuclear wavepacket dynamics on, and nonadiabatic population transfer between, polaritonic surfaces without applying a probe pulse. The latter provides an unambiguous (and in principle experimentally accessible) dynamical fingerprint of light-induced conical intersections.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要