An Avascular Niche Created by Axitinib-Loaded PCL/Collagen Nanofibrous Membrane Stabilized Subcutaneous Chondrogenesis of Mesenchymal Stromal Cells.

Advanced science (Weinheim, Baden-Wurttemberg, Germany)(2021)

Cited 23|Views24
No score
Abstract
Engineered cartilage derived from mesenchymal stromal cells (MSCs) always fails to maintain the cartilaginous phenotype in the subcutaneous environment due to the ossification tendency. Vascular invasion is a prerequisite for endochondral ossification during the development of long bone. As an oral antitumor medicine, Inlyta (axitinib) possesses pronounced antiangiogenic activity, owing to the inactivation of the vascular endothelial growth factor (VEGF) signaling pathway. In this study, axitinib-loaded poly(ε-caprolactone) (PCL)/collagen nanofibrous membranes are fabricated by electrospinning for the first time. Rabbit-derived MSCs-engineered cartilage is encapsulated in the axitinib-loaded nanofibrous membrane and subcutaneously implanted into nude mice. The sustained and localized release of axitinib successfully inhibits vascular invasion, stabilizes cartilaginous phenotype, and helps cartilage maturation. RNA sequence further reveals that axitinib creates an avascular, hypoxic, and low immune response niche. Timp1 is remarkably upregulated in this niche, which probably plays a functional role in inhibiting the activity of matrix metalloproteinases and stabilizing the engineered cartilage. This study provides a novel strategy for stable subcutaneous chondrogenesis of mesenchymal stromal cells, which is also suitable for other medical applications, such as arthritis treatment, local treatment of tumors, and regeneration of other avascular tissues (cornea and tendon).
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined