SMAD4 is critical in suppression of BRAF-V600E serrated tumorigenesis

ONCOGENE(2021)

引用 6|浏览3
暂无评分
摘要
BRAF-driven colorectal cancer is among the poorest prognosis subtypes of colon cancer. Previous studies suggest that BRAF -mutant serrated cancers frequently exhibit Microsatellite Instability (MSI) and elevated levels of WNT signaling. The loss of tumor-suppressor Smad4 in oncogenic BRAF-V600E mouse models promotes rapid serrated tumor development and progression, and SMAD4 mutations co-occur in human patient tumors with BRAF-V600E mutations. This study assesses the role of SMAD4 in early-stage serrated tumorigenesis. SMAD4 loss promotes microsatellite stable (MSS) serrated tumors in an oncogenic BRAF-V600E context, providing a model for MSS serrated cancers. Inactivation of Msh2 in these mice accelerated tumor formation, and whole-exome sequencing of both MSS and MSI serrated tumors derived from these mouse models revealed that all serrated tumors developed oncogenic WNT mutations, predominantly in the WNT-effector gene Ctnnb1 (β-catenin). Mouse models mimicking the oncogenic β-catenin mutation show that the combination of three oncogenic mutations ( Ctnnb1, Braf , and Smad4 ) are critical to drive rapid serrated dysplasia formation. Re-analysis of human tumor data reveals BRAF-V600E mutations co-occur with oncogenic mutations in both WNT and SMAD4/TGFβ pathways. These findings identify SMAD4 as a critical factor in early-stage serrated cancers and helps broaden the knowledge of this rare but aggressive subset of colorectal cancer.
更多
查看译文
关键词
Cancer genetics,Cancer models,Medicine/Public Health,general,Internal Medicine,Cell Biology,Human Genetics,Oncology,Apoptosis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要