In Vitro And In Vivo Assessment Of Dietary Supplementation Of Both Natural Or Nano-Zeolite In Goat Diets: Effects On Ruminal Fermentation And Nutrients Digestibility

ANIMALS(2021)

引用 8|浏览3
暂无评分
摘要
Simple Summary Increasing fibrous feed digestibility while reducing methane (CH4) emission through manipulating rumen fermentation patterns to improve animal performance is the most critical challenge in the animal nutrition field. Nanotechnology has revolutionized the commercial application of nano-sized minerals in medicine, engineering, information, environmental technology, pigments, food, electronics appliances, biological and pharmaceutical applications, and many more. Therefore, animal nutrition scientists also resorted to using minerals and clays such as zeolite with different forms in feeding animals and evaluate this additive in animal performance. The natural zeolite clay is known for its high cation exchange capacity and adsorption characteristics that can modify ruminal fluid viscosity and binding capacity with ammonia (NH3-N). After evaluating the addition of zeolite in vivo and in vitro, results indicated that zeolite (natural and nano forms) maintained rumen pH, increased protozoa numbers, and improved propionate production. Medium supplementation level of the natural form of zeolite at 20 g/kg dry matter (DM) was the most efficient dose in reducing CH4 production, while the zeolite nano-form supplemented at 0.4 g/kg DM was the most effective dose in improving the organic matter (OM) degradability and reducing the NH3-N concentration compared to the control. This study aimed to evaluate in vitro and in vivo dietary supplementation with different levels of natural or nano-zeolite forms on rumen fermentation patterns and nutrient digestibility. In the in vitro experiment, a basal diet (50% concentrate: 50% forage) was incubated without additives (control) and with natural zeolite (10, 20, 30 g/kg DM) or nano-zeolite (0.2, 0.3, 0.4, 0.5, 1.0 g/kg DM) for 24 h to assess their effect on ruminal fermentation, feed degradability, and gas and methane production using a semi-automatic system of in vitro gas production (GP). The most effective doses obtained from the in vitro experiment were evaluated in vivo using 30 Barki goats (26 +/- 0.9 SE kg body weight). Goats were allocated into three dietary treatments (n = 10/treatment) as follows: control (basal diet without any supplementations), natural zeolite (20 g/kg DM diet), and nano-zeolite (0.40 g/kg DM diet). The in vitro results revealed that only the nano-zeolite supplementation form quadratically (p = 0.004) increased GP, and the level of 0.5 g/kg DM had the highest GP value compared to the control. Both zeolite forms affected the CH4 production, linear, and quadratic reductions (p < 0.05) in CH4 (mL/g DM), consistent with linear increases in truly degraded organic matter (TDOM) (p = 0.09), and propionate molar proportions (p = 0.007) were observed by nano zeolite treatment, while the natural form of zeolite resulted in a linear CH4 reduction consistent with a linear decrease (p = 0.004) in NH3-N, linear increases in TDOM (p = 0.09), and propionate molar proportions (p = 0.004). Results of the in vivo experiment demonstrated that the nutrient digestibility was similar among all treatments. Nano zeolite enhanced (p < 0.05) the total short-chain fatty acids and butyrate concentrations, while both zeolite forms decreased (p < 0.001) NH3-N compared to the control. These results suggested that both zeolite supplementation forms favorably modified the rumen fermentation in different patterns.
更多
查看译文
关键词
zeolite, nano-zeolite, in vitro gas production, digestibility, goat, methane emission, clay minerals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要