A Dopamine Acrylamide Molecule for Promoting Collagen Biomimetic Mineralization and Regulating Crystal Growth Direction (vol 13, pg 39142, 2021)

ACS APPLIED MATERIALS & INTERFACES(2023)

Cited 13|Views24
No score
Abstract
The reconstruction of the intra/interfibrillar mineralized collagen microstructure is extremely important in biomaterial science and regeneration medicine. However, certain problems, such as low efficiency and long period of mineralization, are apparent, and the mechanism of interfibrillar mineralization is often neglected in the present literature. Thus, we propose a novel model of biomimetic collagen mineralization that uses molecules with the dual function of cross-linking collagen and regulating collagen mineralization to construct the intrafibrillar and interfibrillar collagen mineralization of the structure of mineralized collagen hard tissues. In the present study completed in vitro, N-2-(3,4-dihydroxyphenyl) acrylamide (DAA) is used to bind and cross-link collagen molecules and further stabilize the self-assembled collagen fibers. The DAA-collagen complex provides more affinity with calcium and phosphate ions, which can reduce the calcium phosphate/collagen interfacial energy to promote hydroxyapatite (HA) nucleation and accelerate the rate of collagen fiber mineralization. Besides inducing intrafibrillar mineralization, the DAA-collagen complex mineralization template can realize interfibrillar mineralization with the c-axis of the HA crystal on the surface of collagen fibers and between fibers that are parallel to the long axis of collagen fibers. The DAA-collagen complex, as a new type of mineralization template, may provide a new collagen mineralization strategy to produce a mineralized scaffold material for tissue engineering or develop bone-like materials.
More
Translated text
Key words
collagen, intrafibrillar mineralization, interfibrillar mineralization, N-2-(3,4-dihydroxyphenyl) acrylamide, cross-linking, molecular dynamics simulation
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined