Monte Carlo Mp2-F12 For Noncovalent Interactions: The C-60 Dimer

JOURNAL OF PHYSICAL CHEMISTRY A(2021)

引用 5|浏览0
暂无评分
摘要
A scalable stochastic algorithm is presented that can evaluate explicitly correlated (F12) second-order many-body perturbation (MP2) energies of weak, noncovalent, intermolecular interactions. It first transforms the formulas of the MP2 and F12 energy differences into a short sum of high-dimensional integrals of Green's functions in real space and imaginary time. These integrals are then evaluated by the Monte Carlo method augmented by parallel execution, redundant-walker convergence acceleration, direct-sampling autocorrelation elimination, and control-variate error reduction. By sharing electron-pair walkers across the supermolecule and its subsystems spanned by the joint basis set, the statistical uncertainty is reduced by one to 2 orders of magnitude in the MP2 binding energy corrected for the basis-set incompleteness and superposition errors. The method predicts the MP2-F12/aug-cc-pVDZ binding energy of 19.1 +/- 4.0 kcal mol(-1) for the C-60 dimer at the center distance of 9.748 angstrom.
更多
查看译文
关键词
noncovalent interactions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要