Spatiotemporal Distribution of Hydrophobic Organic Contaminants in Spiked-Sediment Toxicity Tests: Measuring Total and Freely Dissolved Concentrations in Porewater and Overlying Water.

ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY(2021)

Cited 8|Views14
No score
Abstract
The sediment-water interface of spiked-sediment toxicity tests is a complex exposure system, where multiple uptake pathways exist for benthic organisms. The freely dissolved concentration (Cfree ) in sediment porewater has been proposed as a relevant exposure metric to hydrophobic organic contaminants (HOCs) in this system. However, Cfree has rarely been measured in spiked-sediment toxicity tests. We first developed a direct immersion solid-phase microextraction method for measuring Cfree in overlying water and porewater in a sediment test using polydimethylsiloxane-coated glass fibers, resulting in sensitive and repeatable in situ measurements of HOCs. Then, we measured Cfree and total dissolved concentrations (Cdiss ) in the sediment test systems with the freshwater amphipod Hyalella azteca and thoroughly evaluated the temporal and spatial profiles of four HOCs (phenanthrene, pyrene, benzo[a]pyrene, and chlorpyrifos). Furthermore, we examined the relationship between the measured concentrations and the lethality of H. azteca. We found that the test system was far from an equilibrium state for all four chemicals tested, where Cdiss in overlying water changed over the test duration and a vertical Cfree gradient existed at the sediment-water interface. In porewater Cdiss was larger than Cfree by a factor of 170 to 220 for benzo[a]pyrene because of the strong binding to dissolved organic carbon. Comparison of the median lethal concentrations of chlorpyrifos in the sediment test and those in water-only tests indicates that Cfree in porewater was the most representative indicator for toxicity of this chemical. The method and findings presented in the present study warrant further research on the chemical transport mechanisms and the actual exposure in sediment tests using different chemicals, sediments, and test species. Environ Toxicol Chem 2021;40:3148-3158. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
More
Translated text
Key words
Freely dissolved concentration, Spiked-sediment toxicity test, Amphipod, Solid-phase microextraction
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined