Shapes of Nonsymmetric Capillary Bridges

JOURNAL OF PHYSICAL CHEMISTRY B(2021)

Cited 0|Views5
No score
Abstract
Here we study the shapes of droplets captured between chemically distinct parallel plates. This work is a preliminary step toward characterizing the influence of second-phase bridging between biomolecular surfaces on their solution contacts, i.e., capillary attraction or repulsion. We obtain a simple, variable-separated quadrature formula for the bridge shape. The technical complication of double-ended boundary conditions on the shapes of nonsymmetric bridges is addressed by studying waists in the bridge shape, i.e., points where the bridge silhouette has zero derivative. Waists are generally expected with symmetric bridges, but waist points can serve to characterize shape segments in general cases. We study how waist possibilities depend on the physical input to these problems, noting that these formulas change with the sign of the inside-outside pressure difference of the bridge. These results permit a variety of different interesting shapes, and the development below is accompanied by several examples.
More
Translated text
Key words
bridges,shapes,non-symmetric
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined