Evaluating the mucoprotective effects of glycyrrhizic acid-loaded polymeric nanoparticles in a murine model of 5-fluorouracil-induced intestinal mucositis via suppression of inflammatory mediators and oxidative stress

INFLAMMOPHARMACOLOGY(2021)

引用 14|浏览2
暂无评分
摘要
Objectives 5-Fluorouracil (5-FU), a chemotherapeutic drug, has severe deteriorating effects on the intestine, leading to mucositis. Glycyrrhizic acid is a compound derived from a common herbal plant Glycyrrhiza glabra, with mucoprotective, antioxidant and anti-inflammatory actions, however, associated with poor pharmacokinetics. Owing to the remarkable therapeutic action of glycyrrhizic acid-loaded polymeric nanocarriers in inflammatory bowel disease, we explored their activity against 5-FU-induced intestinal mucositis in mice. Polymeric nanocarriers have proven to be efficient drug delivery vehicles for the long-term treatment of inflammatory diseases, but have not yet been explored for 5-FU-induced mucositis. Therefore, this study aimed to produce glycyrrhizic acid-loaded polylactic-co-glycolic acid (GA-PLGA) nanoparticles to evaluate their protective and therapeutic effects in a 5-FU-induced mucositis model. Methods GA-PLGA nanoparticles were prepared using a modified double emulsion method, physicochemically characterized, and tested for in vitro drug release. Thereafter, mucositis was induced by 5-FU (50 mg/kg; IP) administration to the mice for the first 3 days (day 0, 1, 2), and mice were treated orally with GA-PLGA nanoparticles for 7 days (day 0–6). Results GA-PLGA nanoparticles significantly reduced mucositis severity measured by body weight, diarrhea score, distress, and anorexia. Further, 5-FU induced intestinal histopathological damage, altered villi-crypt length, reduced goblet cell count, elevated pro-inflammatory mediators, and suppressed antioxidant enzymes, all of which were reversed by GA-PLGA nanoparticles. Conclusion Morphological, behavioral, histological, and biochemical results suggested that GA-PLGA nanoparticles were efficient, biocompatible, targeted, and sustained release drug delivery nano-vehicle for enhanced mucoprotective, anti-inflammatory, and antioxidant effects in 5-FU-induced intestinal mucositis. Graphic abstract
更多
查看译文
关键词
5-Fluorouracil, Oral drug delivery, Intestinal mucositis, Polymeric nanoparticles, Glycyrrhizic acid, Oxidative stress
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要