A Wireless Near-Infrared Spectroscopy Device for Flap Monitoring: Proof of Concept in a Porcine Musculocutaneous Flap Model

JOURNAL OF RECONSTRUCTIVE MICROSURGERY(2022)

引用 6|浏览26
暂无评分
摘要
Background Current near-infrared spectroscopy (NIRS)-based systems for continuous flap monitoring are highly sensitive for detecting malperfusion. However, the clinical utility and user experience are limited by the wired connection between the sensor and bedside console. This wire leads to instability of the flap-sensor interface and may cause false alarms. Methods We present a novel wearable wireless NIRS sensor for continuous fasciocutaneous free flap monitoring. This waterproof silicone-encapsulated Bluetooth-enabled device contains two light-emitting diodes and two photodetectors in addition to a battery sufficient for 5 days of uninterrupted function. This novel device was compared with a ViOptix T.Ox monitor in a porcine rectus abdominus myocutaneous flap model of arterial and venous occlusions. Results Devices were tested in four flaps using three animals. Both devices produced very similar tissue oxygen saturation (StO (2) ) tracings throughout the vascular clamping events, with obvious and parallel changes occurring on arterial clamping, arterial release, venous clamping, and venous release. Small interdevice variations in absolute StO (2) value readings and magnitude of change were observed. The normalized cross-correlation at zero lag describing correspondence between the novel NIRS and T.Ox devices was >0.99 in each trial. Conclusion The wireless NIRS flap monitor is capable of detecting StO (2) changes resultant from arterial vascular occlusive events. In this porcine flap model, the functionality of this novel sensor closely mirrored that of the T.Ox wired platform. This device is waterproof, highly adhesive, skin conforming, and has sufficient battery life to function for 5 days. Clinical testing is necessary to determine if this wireless functionality translates into fewer false-positive alarms and a better user experience.
更多
查看译文
关键词
tissue perfusion monitoring, near-infrared spectroscopy, flap monitoring
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要