Probing defect densities at the edges and inside Josephson junctions of superconducting qubits

NPJ QUANTUM INFORMATION(2022)

引用 9|浏览8
暂无评分
摘要
Tunneling defects in disordered materials form spurious two-level systems which are a major source of decoherence for micro-fabricated quantum devices. For superconducting qubits, defects in tunnel barriers of submicrometer-sized Josephson junctions couple strongest to the qubit, which necessitates optimization of the junction fabrication to mitigate defect formation. Here, we investigate whether defects appear predominantly at the edges or deep within the amorphous tunnel barrier of a junction. For this, we compare defect densities in differently shaped Al/AlO x /Al Josephson junctions that are part of a Transmon qubit. We observe that the number of detectable junction-defects is proportional to the junction area, and does not significantly scale with the junction’s circumference, which proposes that defects are evenly distributed inside the tunnel barrier. Moreover, we find very similar defect densities in thermally grown tunnel barriers that were formed either directly after the base electrode was deposited, or in a separate deposition step after removal of native oxide by Argon ion milling.
更多
查看译文
关键词
Quantum information,Qubits,Physics,general,Quantum Physics,Quantum Information Technology,Spintronics,Quantum Computing,Quantum Field Theories,String Theory,Classical and Quantum Gravitation,Relativity Theory
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要