Regulations of expressions of rat/human sulfotransferases by anticancer drug, nolatrexed, and micronutrients.

ANTI-CANCER DRUGS(2022)

Cited 0|Views6
No score
Abstract
Cancer is related to the cellular proliferative state. Increase in cell-cycle regulatory function augments cellular folate pool. This pathway is therapeutically targeted. A number of drugs influences this metabolism, that is, folic acid, folinic acid, nolatrexed, and methotrexate. Our previous study showed methotrexate influences on rat/human sulfotransferases. Present study explains the effect of nolatrexed (widely used in different cancers) and some micronutrients on the expressions of rat/human sulfotransferases. Female Sprague-Dawley rats were treated with nolatrexed (01-100 mg/kg) and rats of both sexes were treated to folic acid (100, 200, or 400 mg/kg) for 2-weeks and their aryl sulfotransferase-IV (AST-IV; β-napthol sulfation) and sulfotransferase (STa; DHEA sulfation) activities, protein expression (western blot) and mRNA expression (RT-PCR) were tested. In human-cultured hepatocarcinoma (HepG2) cells nolatrexed (1 nM-1.2 mM) or folinic acid (10 nM-10 μM) were applied for 10 days. Folic acid (0-10 μM) was treated to HepG2 cells. PPST (phenol catalyzing), MPST (dopamine and monoamine), DHEAST (dehydroepiandrosterone and DHEA), and EST (estradiol sulfating) protein expressions (western-blot) were tested in HepG2 cells. Present results suggest that nolatrexed significantly increased sulfotransferases expressions in rat (protein, STa, F = 4.87, P < 0.05/mRNA, AST-IV, F = 6.702, P < 0.014; Student's t test, P < 0.01-0.05) and HepG2 cells. Folic acid increased sulfotransferases activity/protein in gender-dependant manner. Both folic and folinic acid increased several human sulfotransferases isoforms with varied level of significance (least or no increase at highest dose) in HepG2 cells pointing its dose-dependent multiphasic responses. The clinical importance of this study may be furthered in the verification of sulfation metabolism of several exogenous/endogenous molecules, drug-drug interaction and their influences on cancer pathophysiological processes. Further studies are necessary.
More
Translated text
Key words
anticancer drugs, folic acid, nolatrexed, protein and enzymatic induction, sulfotransferases
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined