Beyond Malloc Efficiency To Fleet Efficiency: A Hugepage-Aware Memory Allocator

PROCEEDINGS OF THE 15TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION (OSDI '21)(2021)

引用 28|浏览56
暂无评分
摘要
Memory allocation represents significant compute cost at the warehouse scale and its optimization can yield considerable cost savings. One classical approach is to increase the efficiency of an allocator to minimize the cycles spent in the allocator code. However, memory allocation decisions also impact overall application performance via data placement, offering opportunities to improve fleetwide productivity by completing more units of application work using fewer hardware resources. Here, we focus on hugepage coverage. We present TEMERAIRE, a hugepage-aware enhancement of TCMALLOC to reduce CPU overheads in the application's code. We discuss the design and implementation of TEMERAIRE including strategies for hugepage-aware memory layouts to maximize hugepage coverage and to minimize fragmentation overheads. We present application studies for 8 applications, improving requests-per-second (RPS) by 7.7% and reducing RAM usage 2.4%. We present the results of a 1% experiment at fleet scale as well as the longitudinal rollout in Google's warehouse scale computers. This yielded 6% fewer TLB miss stalls, and 26% reduction in memory wasted due to fragmentation. We conclude with a discussion of additional techniques for improving the allocator development process and potential optimization strategies for future memory allocators.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要