Structural basis of meiotic chromosome synaptic elongation through hierarchical fibrous assembly of SYCE2-TEX12

Nature Structural & Molecular Biology(2021)

引用 19|浏览0
暂无评分
摘要
The synaptonemal complex (SC) is a supramolecular protein assembly that mediates synapsis between homologous chromosomes during meiosis. SC elongation along the chromosome length (up to 24 μm) depends on its midline α-fibrous component SYCE2-TEX12. Here, we report X-ray crystal structures of human SYCE2-TEX12 as an individual building block and on assembly within a fibrous lattice. We combine these structures with mutagenesis, biophysics and electron microscopy to reveal the hierarchical mechanism of SYCE2-TEX12 fiber assembly. SYCE2-TEX12’s building blocks are 2:2 coiled coils that dimerize into 4:4 hetero-oligomers and interact end-to-end and laterally to form 10-nm fibers that intertwine within 40-nm bundled micrometer-long fibers that define the SC’s midline structure. This assembly mechanism bears striking resemblance with intermediate filament proteins vimentin, lamin and keratin. Thus, SYCE2-TEX12 exhibits behavior typical of cytoskeletal proteins to provide an α-fibrous SC backbone that structurally underpins synaptic elongation along meiotic chromosomes.
更多
查看译文
关键词
Chromatin structure,Cytoskeletal proteins,Electron microscopy,SAXS,X-ray crystallography,Life Sciences,general,Biochemistry,Protein Structure,Membrane Biology,Biological Microscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要