Predator-Prey Adaptive Control for Exosome-based Molecular Communications Glioblastoma Treatment

IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021)(2021)

引用 1|浏览7
暂无评分
摘要
Glioblastoma Multiform (GBM) is known as one of the most malignant tumours in the brain, and challenges remain in developing effective therapeutic solutions. This paper addresses an open-loop control molecular communication system using an adaptive algorithm that controls engineered induced Neural Stem Cells (iNSCs) to release therapeutic exosomes for treating GBM. The adaptive algorithm is based on the Lotka-Volterra Predator-Prey model, and virtually monitors the tumour growth from an external Brain-Machine Interface to control the release of the exosomes for the treatment. We developed the model to incorporate the control from an external RF signal that controls the production of exosomes as well as the diffusion propagation of exosomes through a 3D simulated Extracellular Space tissue. Based on numerical analysis coupled with simulations, we found that factors such as stochastic propagation of exosomes influence the aggressiveness of the model to tackle the tumour. This work can lay the foundation for future adaptive Brain-Machine Interface that controls molecular communication system for GBM treatment.
更多
查看译文
关键词
Lotka-Volterra Predator-Prey, Control-Theory, Exosomes, Glioblastoma, Molecular Communications, Theranostics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要