Dispersal ability, trophic position and body size mediate species turnover processes: Insights from a multi‐taxa and multi‐scale approach

user-60ab1d9b4c775e04970067d6(2021)

引用 7|浏览30
暂无评分
摘要
Aim Despite increasing interest in β‐diversity, that is the spatial and temporal turnover of species, the mechanisms underlying species turnover at different spatial scales are not fully understood, although they likely differ among different functional groups. We investigated the relative importance of dispersal limitations and the environmental filtering caused by vegetation for local, multi‐taxa forest communities differing in their dispersal ability, trophic position and body size. Location Temperate forests in five regions across Germany. Methods In the inter‐region analysis, the independent and shared effects of the regional spatial structure (regional species pool), landscape spatial structure (dispersal limitation) and environmental factors on species turnover were quantified with a 1‐ha grain across 11 functional groups in up to 495 plots by variation partitioning. In the intra‐region analysis, the relative importance of three environmental factors related to vegetation (herb and tree layer composition and forest physiognomy) and spatial structure for species turnover was determined. Results In the inter‐region analysis, over half of the explained variation in community composition (23% of the total explained 35%) was explained by the shared effects of several factors, indicative of spatially structured environmental filtering. Among the independent effects, environmental factors were the strongest on average over 11 groups, but the importance of landscape spatial structure increased for less dispersive functional groups. In the intra‐region analysis, the independent effect of plant species composition had a stronger influence on species turnover than forest physiognomy, but the relative importance of the latter increased with increasing trophic position and body size. Main conclusions Our study revealed that the mechanisms structuring assemblage composition are associated with the traits of functional groups. Hence, conservation frameworks targeting biodiversity of multiple groups should cover both environmental and biogeographical gradients. Within regions, forest management can enhance β‐diversity particularly by diversifying tree species composition and forest physiognomy.
更多
查看译文
关键词
Biological dispersal,Vegetation,Forest management,Trophic level,Biodiversity,Temperate rainforest,Explained variation,Ecology,Taxon,Biology
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要