Copper-Silver Nanohybrids: Sars-Cov-2 Inhibitory Surfaces

NANOMATERIALS(2021)

Cited 18|Views1
No score
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a severe health threat. The COVID-19 infections occurring in humans and animals render human-animal interfaces hot spots for spreading the pandemic. Lessons from the past point towards the antiviral properties of copper formulations; however, data showing the "contact-time limit" surface inhibitory efficacy of copper formulations to contain SARS-CoV-2 are limited. Here, we show the rapid inhibition of SARS-CoV-2 after only 1 and 5 min on two different surfaces containing copper-silver (Cu-Ag) nanohybrids. We characterized the nanohybrids' powder and surfaces using a series of sophisticated microscopy tools, including transmission and scanning electron microscopes (TEM and SEM) and energy-dispersive X-ray spectroscopy (EDX). We used culturing methods to demonstrate that Cu-Ag nanohybrids with high amounts of Cu (similar to 65 and 78 wt%) and lower amounts of Ag (similar to 7 and 9 wt%) inhibited SARS-CoV-2 efficiently. Collectively, the present work reveals the rapid SARS-CoV-2 surface inhibition and the promising application of such surfaces to break the SARS-CoV-2 transmission chain. For example, such applications could be invaluable within a hospital or live-stock settings, or any public place with surfaces that people frequently touch (i.e., public transportation, shopping malls, elevators, and door handles) after the precise control of different parameters and toxicity evaluations.
More
Translated text
Key words
SARS-CoV-2, human-animal interfaces, nanohybrids, copper, silver, inhibitory surfaces
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined