A Facile Strategy To Prepare Small Water Clusters Via Interacting With Functional Molecules

INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES(2021)

Cited 3|Views5
No score
Abstract
Although small water clusters (SWCs) are important in many research fields, efficient methods of preparing SWCs are still rarely reported, which is mainly due to the lack of related materials and understanding of the molecular interaction mechanisms. In this study, a series of functional molecules were added in water to obtain small water cluster systems. The decreasing rate of the half-peak width in a sodium dodecyl sulfate (SDS)-water system reaches approximate to 20% at 0.05 mM from O-17 nuclear magnetic resonance (NMR) results. Based on density functional theory (DFT) and molecular dynamics (MD) simulation calculation, it can be concluded that functional molecules with stronger negative electrostatic potential (ESP) and higher hydrophilicity have a stronger ability to destroy big water clusters. Notably, the concentrations of our selected molecule systems are one to two magnitudes lower than that of previous reports. This study provides a promising way to optimize aqueous systems in various fields such as oilfield development, protein stability, and metal anti-corrosion.
More
Translated text
Key words
water cluster, functional molecule, molecular interaction
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined