Mechanical And Electrical Interaction Of Biological Membranes With Nanoparticles And Nanostructured Surfaces

MEMBRANES(2021)

引用 5|浏览7
暂无评分
摘要
In this review paper, we theoretically explain the origin of electrostatic interactions between lipid bilayers and charged solid surfaces using a statistical mechanics approach, where the orientational degree of freedom of lipid head groups and the orientational ordering of the water dipoles are considered. Within the modified Langevin Poisson-Boltzmann model of an electric double layer, we derived an analytical expression for the osmotic pressure between the planar zwitterionic lipid bilayer and charged solid planar surface. We also show that the electrostatic interaction between the zwitterionic lipid head groups of the proximal leaflet and the negatively charged solid surface is accompanied with a more perpendicular average orientation of the lipid head-groups. We further highlight the important role of the surfaces' nanostructured topography in their interactions with biological material. As an example of nanostructured surfaces, we describe the synthesis of TiO2 nanotubular and octahedral surfaces by using the electrochemical anodization method and hydrothermal method, respectively. The physical and chemical properties of these nanostructured surfaces are described in order to elucidate the influence of the surface topography and other physical properties on the behavior of human cells adhered to TiO2 nanostructured surfaces. In the last part of the paper, we theoretically explain the interplay of elastic and adhesive contributions to the adsorption of lipid vesicles on the solid surfaces. We show the numerically predicted shapes of adhered lipid vesicles corresponding to the minimum of the membrane free energy to describe the influence of the vesicle size, bending modulus, and adhesion strength on the adhesion of lipid vesicles on solid charged surfaces.
更多
查看译文
关键词
lipid bilayer electrostatics, zwitterionic lipid bilayers, electric double layer, osmotic pressure, orientational degree of freedom of lipid headgroups, orientational ordering of water dipoles, adhesion of lipid vesicles, lipid bilayer elasticity, lipid vesicle shapes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要