Capturing Multiple Disease Resistance In Wheat Through Intergeneric Hybridization

BIOLOGY-BASEL(2021)

引用 1|浏览13
暂无评分
摘要
Simple Summary Providing disease resistance in our crop plants is our ongoing exercise for plant pathologists/breeders/geneticists. Pathogens are continually evolving and releasing new variants. The variants arise through mutations or through sexual cycles on their respective alternate hosts. Thus, the search continues for unique genes for resistance. Another newer concept is the "pyramiding" of resistance genes. It has been shown that a cultivar may last only 3 years or so before being overcome by a new variant of the pathogen. The release of new cultivars with up to four resistance genes will delay their breakdown. In our ongoing work we have also produced pyramids containing a combination of resistance genes, including SrCad for resistance to new races of stem rust, Lr34, which is a major gene for resistance to leaf rust, and Fhb1, which is a common FHB QTL. This required the production of a series of doubled haploids (DH) to produce lines containing all four genes in reasonable-sized populations. A complex series of four-way crosses were required to generate the various gene combinations. In the studies reported here, the essential tools for marker-assisted-selection are produced, i.e., mapping populations containing the resistance genes and molecular makers assigned to each gene. It should be possible to simultaneously manipulate several resistance genes from existing genetic stocks without requiring complex cross combinations. Derivatives from 4 species from the secondary gene pool of wheat-1 diploid (T. monococcum), 2 tetraploid (T. carthlicum; T. timopheevi), and 1 hexaploid (T. miguschovae)-were screened for resistance to Fusarium head blight, leaf rust, stem rust, and stripe rust. Where screening, genetic studies, and mapping were completed it was shown that all species carried resistance to multiple plant diseases. Some derived lines carried resistance to up to four different diseases. Where mapping was completed, it was shown that different diseases mapped to different chromosomes within any one accession.
更多
查看译文
关键词
intergeneric hybrids, wheat, disease resistance, Fusarium, leaf rust, stem rust, powdery mildew
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要