Prenatal Exposure to Tobacco and Alcohol Alters Development of the Neonatal Auditory System

DEVELOPMENTAL NEUROSCIENCE(2021)

Cited 0|Views6
No score
Abstract
Prenatal exposures to alcohol (PAE) and tobacco (PTE) are known to produce adverse neonatal and childhood outcomes including damage to the developing auditory system. Knowledge of the timing, extent, and combinations of these exposures on effects on the developing system is limited. As part of the physiological measurements from the Safe Passage Study, Auditory Brainstem Responses (ABRs) and Transient Otoacoustic Emissions (TEOAEs) were acquired on infants at birth and one-month of age. Research sites were in South Africa and the Northern Plains of the U.S. Prenatal information on alcohol and tobacco exposure was gathered prospectively on mother/infant dyads. Cluster analysis was used to characterize three levels of PAE and three levels of PTE. Repeated-measures ANOVAs were conducted for newborn and one-month-old infants for ABR peak latencies and amplitudes and TEOAE levels and signal-to-noise ratios. Analyses controlled for hours of life at test, gestational age at birth, sex, site, and other exposure. Significant main effects of PTE included reduced newborn ABR latencies from both ears. PTE also resulted in a significant reduction of ABR peak amplitudes elicited in infants at 1-month of age. PAE led to a reduction of TEOAE amplitude for 1-month-old infants but only in the left ear. Results indicate that PAE and PTE lead to early disruption of peripheral, brainstem, and cortical development and neuronal pathways of the auditory system, including the olivocochlear pathway. (C) 2021 S. Karger AG, Basel
More
Translated text
Key words
Prenatal tobacco exposure, Prenatal alcohol exposure, Auditory brainstem response, Transient-evoked otoacoustic emission
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined