Comprehensive study of amorphous metal oxide and Ta2O5-based mixed oxide coatings for gravitational-wave detectors

PHYSICAL REVIEW D(2022)

引用 10|浏览15
暂无评分
摘要
High finesse optical cavities of current interferometric gravitational-wave detectors are significantly limited in sensitivity by laser quantum noise and coating thermal noise. The thermal noise is associated with internal energy dissipation in the materials that compose the test masses of the interferometer. Our understanding of how the internal friction is linked to the amorphous material structure is limited due to the complexity of the problem and the lack of studies that span over a large range of materials. We present a systematic investigation of amorphous metal oxide and Ta2O5-based mixed oxide coatings to evaluate their suitability for low Brownian noise experiments. It is shown that the mechanical loss of metal oxides is correlated to their amorphous morphology, with continuous random network materials such as SiO2 and GeO2 featuring the lowest loss angles. We evaluated different Ta2O5-based mixed oxide thin films and studied the influence of the dopant in the optical and elastic properties of the coating. We estimated the thermal noise associated with high reflectance multilayer stacks that employ each of the mixed oxides as the high index material. We concluded that the current high index material of TiO2-doped Ta2O5 is the optimal choice for reduced thermal noise among Ta2O5-based mixed oxide coatings with low dopant concentrations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要