Near: New Earths In The Alpha Cen Region (Bringing Visir As A "Visiting Instrument" To Eso-Vlt-Ut4)

GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY VII(2018)

引用 11|浏览7
暂无评分
摘要
ESO in collaboration with the Breakthrough Initiatives, is adding a dedicated coronagraph to the Very Large Telescope mid-IR imager (VISIR) to further boost the high dynamic range imaging capability of this instrument.After the VISIR upgrade in 2012, where coronagraphic masks were first added to VISIR, it became evident that coronagraphy at a ground-based 8m-class telescope, even at wavelengths as long as 10 mu m, critically needs adaptive optics. For VISIR, a work-horse observatory facility instrument in normal operations, this is "easiest" achieved by bringing VISIR as a visiting instrument to the ESO-VLT-UT4 having an adaptive M2.This "visit" enables a meaningful search for Earth-like planets in the habitable zone around both alpha-Cen(1) and alpha-Cen(2). Meaningful here means, achieving a contrast of approximate to 10(-6) within approximate to 0.8 arcsec from the star. Various measures to improve the sensitivity of VISIR will be applied, especially a dedicated filter, faster chopping and a Strehl-ratio close to 100% thanks to extreme adaptive optics. This should allow to detect a planet twice the diameter of Earth in 50 h on source integration time. Key components will be a diffractive coronagraphic mask, the annular groove phase mask (AGPM), optimized for the most sensitive spectral band-pass in the N-band, complemented by a sophisticated apodizer at the level of the Lyot stop. For VISIR noise filtering based on fast chopping is required. A novel internal chopper system will be integrated into the cryostat. This chopper is based on the standard technique from early radio astronomy, conceived by the microwave pioneer Robert Dicke in 1946, which was instrumental for the discovery of the 3K microwave background.For risk mitigation all components are being tested and quali fi ed under realistic conditions in the lab at ESO headquarters before integration into the instrument. The performance or suppression of the coronagraph is so good, that a non-thermal source (vulgo a laser) is needed on the test-bench.We will give an overview of the optical changes to VISIR, the implementation of wave front sensing, the Dicke switch design and laboratory testing, the AGPM design and laboratory testing, non common path error control with a ZELDA mask, sensitivity and contrast estimates, data flow and analysis, the overall project status, plan and outlookNeedless to say that this project is of critical interest for future infrared instrumentation at the next generation of extremely large telescopes aiming at surveying the solar neighborhood for terrestrial planets by detecting and characterizing them based on their mid-IR fluxes.
更多
查看译文
关键词
exo-Earth, alpha-Cen, habitable zone, coronagraphy, apodization, extreme AO, thermal infrared
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要