谷歌浏览器插件
订阅小程序
在清言上使用

Characterizing the nanomechanical properties of microcomedones after treatment with sodium salicylate ex vivo using atomic force microscopy

INTERNATIONAL JOURNAL OF COSMETIC SCIENCE(2021)

引用 1|浏览6
暂无评分
摘要
Objective The treatment of acne presents a major clinical and dermatological challenge. Investigating the nanomechanical properties of the microcomedone precursor lesions using atomic force microscopy (AFM) may prove beneficial in understanding their softening, dissolution and prevention. Although the exact biochemical mechanism of NaSal on microcomedones is not fully understood at present, it appears to exhibit a significant exfoliation effect on the skin via corneodesmosome dissolution. Methods Therefore, to support this exploration, sodium salicylate (NaSal), a common ingredient employed in skin care products, is applied ex vivo to microcomedones,collected by nose strip adhesive tape, and their nanomechanical properties are assessed using AFM. Although the exact biochemical mechanism of NaSal on microcomedones is not fully understood at present, it appears to exhibit a significant exfoliation effect on the skin via corneodesmosome dissolution. Results Herein, our findings demonstrate that when microcomedones are treated with 2% NaSal, samples appeared significantly more compliant ('softer') ((1.3 +/- 0.62) MPa) when compared to their pre-treated measurements ((7.2 +/- 3.6) MPa; p = 0.038). Furthermore, elastic modulus maps showed that after 2% NaSal treatment, areas in the microcomedone appeared softer and swollen in some, but not in all areas, further proving the valuable impact of 2% NaSal solution in altering the biomechanical properties and morphologies in microcomedones. Conclusion Our results are the first of their kind to provide qualitative and quantitative mechanobiological evidence that 2% NaSal decreases the elastic modulus of microcomedones. Therefore, this study provides evidence that NaSal can be beneficial as an active ingredient in topical treatments aimed at targeting microcomedones.
更多
查看译文
关键词
atomic force microscopy,force-volume mapping,microcomedones,sodium salicylate and elastic modulus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要