COL4A3 is degraded in allergic asthma and degradation predicts response to anti-IgE therapy

EUROPEAN RESPIRATORY JOURNAL(2021)

引用 12|浏览21
暂无评分
摘要
Background Asthma is a heterogeneous syndrome substantiating the urgent requirement for endotypespecific biomarkers. Dysbalance of fibrosis and fibrolysis in asthmatic lung tissue leads to reduced levels of the inflammation-protective collagen 4 (COL4A3). Objective To delineate the degradation of COL4A3 in allergic airway inflammation and evaluate the resultant product as a biomarker for anti-IgE therapy response. Methods The serological COL4A3 degradation marker C4Ma3 (Nordic Bioscience, Denmark) and serum cytokines were measured in the ALLIANCE cohort (paediatric cases/controls: n=134/n=35; adult cases/ controls: n=149/n=31). Exacerbation of allergic airway disease in mice was induced by sensitising to ovalbumin (OVA), challenge with OVA aerosol and instillation of poly(cytidylic-inosinic). Fulacimstat(chymase inhibitor; Bayer) was used to determine the role of mast cell chymase in COL4A3 degradation. Patients with cystic fibrosis (n=14) and cystic fibrosis with allergic bronchopulmonary aspergillosis (ABPA; n=9) as well as patients with severe allergic uncontrolled asthma (n=19) were tested for COL4A3 degradation. Omalizumab (anti-IgE) treatment was assessed using the Asthma Control Test. Results Serum levels of C4Ma3 were increased in asthma in adults and children alike and linked to a more severe, exacerbating allergic asthma phenotype. In an experimental asthma mouse model, C4Ma3 was dependent on mast cell chymase. Serum C4Ma3 was significantly elevated in cystic fibrosis plus ABPA and at baseline predicted the success of the anti-IgE therapy in allergic, uncontrolled asthmatics (diagnostic OR 31.5). Conclusion C4Ma3 levels depend on lung mast cell chymase and are increased in a severe, exacerbating allergic asthma phenotype. C4Ma3 may serve as a novel biomarker to predict anti-IgE therapy response.
更多
查看译文
关键词
allergic asthma,anti-ige
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要