Sulfate migration and transformation characteristics in paddy soil profile affected by acid mine drainage.

Environmental research(2021)

引用 6|浏览7
暂无评分
摘要
SO42-, a major component of acid mine drainage (AMD), plays an important role in study environment of AMD. We investigated the distribution and adsorption-desorption mechanisms of SO42- and the variation of stable isotope of sulfur (δ34S) values in the soil profile polluted by AMD. Results showed that the species and 34S values of SO42- differed significantly among different soil depths. In the surface soil (0-20 cm), native water-soluble SO42- (WSS) in the range ~85 % total SO42- was the dominant species. There was a peak of adsorption, which correlated significantly with amorphous oxide Fe, indicating that iron oxides and pH was fundamentally proportional to SO42- forms. The high concentrations of Cu2+ and Pb2+ also played important roles in form of SO42- in soil profile. Desorption kinetics of explained three SO42--bound forms. The trend mean δ34S values of WSS and AS in soil vertical profile was very similar with increasing from surface to subsurface, and have lower δ34S values than those of total sulfur, indicating that mineralization of organic sulfur should produce SO42- that was more depleted in δ34S. SO42- desorbed and trend δ34S values could provide reasonable explanation for the migration of SO42-. In the AMD irrigation scope, the higher SO42- concentration was reserved by immobilized as organic sulfur, and then main approach of SO42- migration was desorption and organic sulfur mineralize in now stage.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要