Octupolar Acrylonitrile-Bridged 2d-Conjugated Polymers Enable Bright Far-Red Emission With Intense Two-Photon Absorption Via Alkoxylation Chemistry

SMALL(2021)

引用 7|浏览5
暂无评分
摘要
Herein, alkoxylation chemistry is introduced as a "one-stone-three-birds" solution for exploring a new family of highly-fluorescent octupolar 2D-conjugated organic polymers/frameworks (OCOPs/OCOFs) combining far-red emission, high fluorescence quantum yield (QY), and strong two-photon absorption (TPA). Both alkoxy-substituted OCOP and OCOF comprising acrylonitrile-bridged strongly-coupled donor3-(acceptor core) chromophores densely packed in either disordered or ordered forms, exhibit significantly redshifted emission. They produce high QY of 22.2% and 27.8% in tetrahydrofuran, large TPA cross section of 600 and 1124 GM, and 2-3 folds and 15-30 folds that of non-alkoxylate amorphous counterpart respectively. Combined theoretical and experimental studies reveal unique "one-stone-three-birds" role of the alkoxylation in realizing red-shifted-emission, improved QY and TPA enabled by inducing steric hindrance effect for weakened pi-pi stacking, and triggering p-pi conjugation effect for electronically engineering octupolar chromophores, while the crystalline engineering enables enforced coplanarity conformation and improved pi-electron delocalization for further improved QY and TPA. The robust and biocompatible pentoxy-substituted polymer can be used not only as metal-free red-emissive phosphor for efficient warm white light-emitting diodes, but also as efficient two-photon fluorescence probes for bio-imaging.
更多
查看译文
关键词
2D-conjugated polymers, alkoxylation chemistry, donor-acceptor, far-red fluorescence, two-photon absorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要