Freedom of the mixer rotation axis improves performance in the quantum approximate optimization algorithm

PHYSICAL REVIEW A(2021)

引用 7|浏览5
暂无评分
摘要
Variational quantum algorithms such as the quantum approximate optimization algorithm (QAOA) are particularly attractive candidates for implementation on near-term quantum processors. As hardware realities such as error and qubit connectivity will constrain achievable circuit depth in the near future, new ways to achieve high performance at low depth are of great interest. In this work, we present a modification to QAOA that adds additional variational parameters in the form of freedom of the rotation axis in the XY plane of the mixer Hamiltonian. Via numerical simulation, we show that this leads to a drastic performance improvement over standard QAOA at finding solutions to the MaxCut problem on graphs of up to seven qubits. Furthermore, we explore the Z-phase error mitigation properties of our modified Ansatz, its performance under a realistic error model for a neutral atom quantum processor, and the class of problems it can solve in a single round.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要