Optimized pulsed sideband cooling and enhanced thermometry of trapped ions

PHYSICAL REVIEW A(2021)

引用 4|浏览1
暂无评分
摘要
Resolved sideband cooling is a standard technique for cooling trapped ions below the Doppler limit to near their motional ground state. Yet the most common methods for sideband cooling implicitly rely on low Doppler-cooled temperatures and tightly confined ions and they cannot be optimized for different experimental conditions. Here we introduce a framework which calculates the fastest possible pulsed sideband cooling sequence for a given number of pulses and set of experimental parameters and we verify its improvement compared to traditional methods using a trapped 171Yb+ ion. After extensive cooling, we find that the ion motional distribution is distinctly nonthermal and thus not amenable to standard thermometry techniques. We therefore develop and experimentally validate an improved method to measure ion temperatures after sideband cooling. These techniques will enable more efficient cooling and thermometry within trapped-ion systems, especially those with high initial temperatures or spatially extended ion wave packets.
更多
查看译文
关键词
sideband cooling,enhanced thermometry,ions
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要