The treatment of electroplating wastewater using an integrated approach of interior microelectrolysis and Fenton combined with recycle ferrite

CHEMOSPHERE(2022)

引用 14|浏览13
暂无评分
摘要
Heavy metal ions in chelated forms have aroused great concerns because of their high solubility, poor biodegradation and extreme stability. In this research, an efficient strategy, interior microelectrolysis-Fenton-recycle ferrite (IM-Fenton-RF), was developed to treat simulated electroplating wastewater containing chelated copper at room temperature. The decomplexation of chelated copper was carried out by both interior micro electrolysis and Fenton reactions. IM process can not only partly degrade the complexes of chelated copper via the microelectrolysis reaction but also it produces Fe2+ ions for the Fenton reaction. After decomplexation, the IM-Fenton effluent directly flowed into the RF reactor for copper ions removal. Under optimum reaction conditions (reflux ratio = 0.37, Fe2+ concentration = 9.20 g/L at pH 10.18), 99.9% copper was removed by the IMFenton-RF system. The produced IM-Fenton-RF sludge is based on ferrite precipitate and has several advantages over metal hydroxides sludge. Ferrite sludge is stable owing to the stability of ferrite's crystal structure, while the toxicity characteristic leaching procedure (TCLP) test meets relevant standards. The sedimentation rate and volume of ferrite sludge were 3.86 times faster and 11.0 times lower than those of metal hydroxides sludge. Furthermore, the yielding sludge of ferrite can be recovered and utilized for the synthesis of Fe-C metallic species, the main compound of IM packing for interior microelectrolysis reaction. All these results show that a combination of IM-Fenton and RF is an effective approach to treat wastewater containing chelated copper, showing great potential for industrial applications.
更多
查看译文
关键词
Recycle ferrite,TCLP,Copper complex,Sludge reduction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要