Whole Animal Multiplexed Single-Cell RNA-Seq Reveals Plasticity of Clytia Medusa Cell Types

Science Advances(2021)

Cited 10|Views8
No score
Abstract
We present an organism-wide, transcriptomic cell atlas of the hydrozoan medusa Clytia hemisphaerica , and determine how its component cell types respond to starvation. Utilizing multiplexed scRNA-seq, in which individual animals were indexed and pooled from control and perturbation conditions into a single sequencing run, we avoid artifacts from batch effects and are able to discern shifts in cell state in response to organismal perturbations. This work serves as a foundation for future studies of development, function, and plasticity in a genetically tractable jellyfish species. Moreover, we introduce a powerful workflow for high-resolution, whole animal, multiplexed single-cell genomics (WHAM-seq) that is readily adaptable to other traditional or non-traditional model organisms. ### Competing Interest Statement The authors have declared no competing interest.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined