Abnormal resting-state EEG power and impaired inhibition control in young smokers

Neuroscience Letters(2021)

Cited 5|Views6
No score
Abstract
Exposure to nicotine during adolescence may cause neurophysiological changes and increase the risks of developing nicotine dependence; it can even lead to lifelong smoking. The intake of nicotine may also lead to abnormal patterns of oscillatory brain activity and inhibition control deficits. However, little is known about the specific relationship between oscillatory brain activity during the resting state and inhibition control capacity in young smokers. In the present study, we acquired resting-state electroencephalography (EEG) data from thirty-four young smokers and 39 age-matched non-smoking controls. Inhibition control performance was measured by a Go/NoGo task. Compared with non-smoking controls, we detected reduced low-frequency delta band activity in the frontal, central and posterior cortices of young smokers. Furthermore, young smokers committed more errors in response to infrequent NoGo trials. Notably, we demonstrated that delta absolute power in the frontal region was negatively correlated with NoGo errors and that alpha power in the central region was positively correlated with NoGo errors in non-smoking controls but not in young smokers. These findings may suggest that these inhibitory control processes were associated with alterations in oscillatory brain activity during the resting state. Our findings suggest that alterations of power spectra in delta bands may act as a useful biomarker of inhibitory control performance and provide a scientific basis for the diagnosis and treatment of nicotine addiction in adolescents.
More
Translated text
Key words
Young smokers,Inhibition control,Resting state,Brain oscillations,Electroencephalography (EEG)
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined