Chrome Extension
WeChat Mini Program
Use on ChatGLM

Non-asymptotic estimates for TUSLA algorithm for non-convex learning with applications to neural networks with ReLU activation function

CoRR(2023)

Cited 0|Views5
No score
Abstract
We consider nonconvex stochastic optimization problems where the objective functions have super-linearly growing and discontinuous stochastic gradients. In such a setting, we provide a nonasymptotic analysis for the tamed unadjusted stochastic Langevin algorithm (TUSLA) introduced in Lovas et al. (2020). In particular, we establish nonasymptotic error bounds for the TUSLA algorithm in Wasserstein-1 and Wasserstein-2 distances. The latter result enables us to further derive nonasymptotic estimates for the expected excess risk. To illustrate the applicability of the main results, we consider an example from transfer learning with ReLU neural networks, which represents a key paradigm in machine learning. Numerical experiments are presented for the aforementioned example, which support our theoretical findings. Hence, in this setting, we demonstrate both theoretically and numerically that the TUSLA algorithm can solve the optimization problem involving neural networks with ReLU activation function. Besides, we provide simulation results for synthetic examples where popular algorithms, e.g., ADAM, AMSGrad, RMSProp and (vanilla) stochastic gradient descent algorithm, may fail to find the minimizer of the objective functions due to the super-linear growth and the discontinuity of the corresponding stochastic gradient, while the TUSLA algorithm converges rapidly to the optimal solution. Moreover, we provide an empirical comparison of the performance of TUSLA with popular stochastic optimizers on real-world datasets, as well as investigate the effect of the key hyperparameters of TUSLA on its performance.
More
Translated text
Key words
nonconvex optimization,nonasymptotic estimates,artificial neural networks,ReLU activation function,taming technique,super-linearly growing coefficients,discontinuous stochastic gradient
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined