Chrome Extension
WeChat Mini Program
Use on ChatGLM

A bimodal burst energy distribution of a repeating fast radio burst source

NATURE(2021)

Cited 168|Views46
No score
Abstract
The event rate, energy distribution and time-domain behaviour of repeating fast radio bursts (FRBs) contain essential information regarding their physical nature and central engine, which are as yet unknown 1 , 2 . As the first precisely localized source, FRB 121102 (refs. 3 – 5 ) has been extensively observed and shows non-Poisson clustering of bursts over time and a power-law energy distribution 6 – 8 . However, the extent of the energy distribution towards the fainter end was not known. Here we report the detection of 1,652 independent bursts with a peak burst rate of 122 h −1 , in 59.5 hours spanning 47 days. A peak in the isotropic equivalent energy distribution is found to be approximately 4.8 × 10 37 erg at 1.25 GHz, below which the detection of bursts is suppressed. The burst energy distribution is bimodal, and well characterized by a combination of a log-normal function and a generalized Cauchy function. The large number of bursts in hour-long spans allows sensitive periodicity searches between 1 ms and 1,000 s. The non-detection of any periodicity or quasi-periodicity poses challenges for models involving a single rotating compact object. The high burst rate also implies that FRBs must be generated with a high radiative efficiency, disfavouring emission mechanisms with large energy requirements or contrived triggering conditions.
More
Translated text
Key words
Compact astrophysical objects,Transient astrophysical phenomena,Science,Humanities and Social Sciences,multidisciplinary
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined