Studying bioluminescence flashes with the ANTARES deep-sea neutrino telescope

Nico Reeb,Sebastian Hutschenreuter, Philipp Zehetner,Torsten Ensslin,A. Albert,S. Alves,M. Andre,M. Anghinolfi,G. Anton,M. Ardid, J. -J. Aubert, J. Aublin, B. Baret,S. Basa, B. Belhorma, M. Bendahman,V. Bertin,S. Biagi, M. Bissinger, J. Boumaaza, M. Bouta,M. C. Bouwhuis,H. Branzas,R. Bruijn,J. Brunner,J. Busto,B. Caiffi,A. Capone,L. Caramete,J. Carr, V. Carretero,S. Celli,M. Chabab, T. N. Chau,R. Cherkaoui El Moursli,T. Chiarusi,M. Circella, A. Coleiro,M. Colomer-Molla,R. Coniglione,P. Coyle, A. Creusot,A. F. Diaz,G. de Wasseige,A. Deschamps,C. Distefano,I. Di Palma, A. Domi,C. Donzaud, D. Dornic, D. Drouhin,T. Eberl,T. van Eeden,N. El Khayati, A. Enzenhoefer,P. Fermani,G. Ferrara,F. Filippini,L. Fusco, Y. Gatelet, P. Gay,H. Glotin, R. Gozzini,R. Gracia Ruiz,K. Graf,C. Guidi, S. Hallmann,H. van Haren, A. J. Heijboer,Y. Hello,J. J. Hernandez-Rey, J. Hoessl, J. Hofestaedt,F. Huang, G. Illuminati,C. W. James,B. Jisse-Jung,M. de Jong,P. de Jong,M. Jongen,M. Kadler,O. Kalekin, U. Katz, N. R. Khan-Chowdhury,A. Kouchner,I. Kreykenbohm,V. Kulikovskiy, R. Lahmann,R. Le Breton, D. Lefevre,E. Leonora,G. Levi, M. Lincetto,D. Lopez-Coto, S. Loucatos, L. Maderer,J. Manczak,M. Marcelin, A. Margiotta,A. Marinelli,J. A. Martinez-Mora, K. Melis,P. Migliozzi,A. Moussa,R. Muller, L. Nauta,S. Navas, E. Nezri,B. O. Fearraigh,M. Organokov,G. E. Pavalas,C. Pellegrino,M. Perrin-Terrin, P. Piattelli,C. Pieterse,C. Poire, V. Popa,T. Pradier, N. Randazzo, S. Reck,G. Riccobene,A. Romanov,A. Sanchez-Losa,F. Salesa Greus, D. F. E. Samtleben, M. Sanguineti,P. Sapienza,J. Schnabel,J. Schumann, F. Schuessler,M. Spurio,Th. Stolarczyk, M. Taiuti,Y. Tayalati,S. J. Tingay, B. Vallage,V. Van Elewyck,F. Versari,S. Viola,D. Vivolo,J. Wilms,S. Zavatarelli, A. Zegarelli,J. D. Zornoza,J. Zuniga

arxiv(2023)

引用 0|浏览23
暂无评分
摘要
We develop a novel technique to exploit the extensive data sets provided by underwater neutrino telescopes to gain information on bioluminescence in the deep sea. The passive nature of the telescopes gives us the unique opportunity to infer information on bioluminescent organisms without actively interfering with them. We propose a statistical method that allows us to reconstruct the light emission of individual organisms, as well as their location and movement. A mathematical model is built to describe the measurement process of underwater neutrino telescopes and the signal generation of the biological organisms. The Metric Gaussian Variational Inference algorithm is used to reconstruct the model parameters using photon counts recorded by photomultiplier tubes. We apply this method to synthetic data sets and data collected by the ANTARES neutrino telescope. The telescope is located 40 km off the French coast and fixed to the sea floor at a depth of 2475 m. The runs with synthetic data reveal that we can model the emitted bioluminescent flashes of the organisms. Furthermore, we find that the spatial resolution of the localization of light sources highly depends on the configuration of the telescope. Precise measurements of the efficiencies of the detectors and the attenuation length of the water are crucial to reconstruct the light emission. Finally, the application to ANTARES data reveals the first localizations of bioluminescent organisms using neutrino telescope data.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要