Clinical Spectrum, Molecular Characterization, Antifungal Susceptibility Testing Of Exophiala Spp. From India And Description Of A Novel Exophiala Species, E. Arunalokei Sp. Nov

FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY(2021)

Cited 5|Views2
No score
Abstract
Introduction Exophiala spp. are important opportunist pathogens causing subcutaneous or even fatal disseminated infections in otherwise both immunosuppressed and healthy individuals but there are no systematic studies on the isolates of Exophiala species from India. Methods Twenty-four isolates of Exophiala species were retrieved from the National Culture Collection of Pathogenic Fungi (NCCPF) and identified phenotypically and by molecular methods (ITS region sequencing) followed by antifungal susceptibility testing (AFST) as per CLSI-M38A3 guidelines. A review of the literature of cases from India was performed up to 1(st) January 2021 using the Medline and Cochrane database. Results E. dermatitidis (n = 8), E. jeanselmei (n = 6), E. spinifera (n = 6), E. mesophila (n = 1), E. oligosperma (n = 1), E. xenobiotica (n = 1) were identified and the sequencing of ITS, beta-tubulin and beta-actin revealed a novel species, E. arunalokei sp. nov. (n = 1). The ITS sequence phylogram of E. jeanselmei revealed that the majority (83%) formed a separate cluster close to type A while majority (75%) of E. dermatitidis were type B. The MIC50 (mg/L) of amphotericin, itraconazole, voriconazole, micafungin, caspofungin, anidulafungin, and posaconazole, was 1, 0.25, 0.125, 0.12, 0.125, 0.062, and 0.062, respectively. Sixteen more cases were identified on the literature review and a significant association of E. dermatitidis with history of surgical procedures (p = 0.013), invasive disease (p = 0.032) and of E. mesophila with tuberculosis (p = 0.026) was seen. Conclusion This, to the best of our knowledge is the first study from India elucidating the molecular and clinical characteristics of Exophiala species and the first Indian report of human infection due to E. xenobiotica and E. arunalokei.
More
Translated text
Key words
Exophiala, India, molecular, novel species, antifungal susceptibility
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined