1H-NMR-based metabolomics study on coronary heart disease with blood-stasis syndrome and phlegm syndrome.

Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences(2021)

引用 2|浏览4
暂无评分
摘要
OBJECTIVES:Coronary heart disease (CHD) is a serious threat to human health because of its high morbidity. It is very urgent to study the pathogenesis of CHD and the effective drug target. The purpose of this paper is using the 1H-nuclear magnetic resonance spectroscopy (1H-NMR) metabolomics technology to establish the metabolic fingerprint and find the potential biomarker metabolites of CHD with blood-stasis syndrome and phlegm syndrome, and to reveal the metabolic mechanism of Xuefu Zhuyu Decoction for the treatment of CHD with blood stasis syndrome. METHODS:The plasma samples of 69 patients with CHD blood-stasis syndrome, 60 patients with CHD phlegm syndrome, and 40 healthy volunteers were collected in this study. Based on the 1H-NMR metabolomics technology, the metabolic fingerprint of CHD with blood-stasis syndrome and phlegm syndrome was established. Multivariate statistical analysis methods including principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) were used to find the potential biomarker metabolites of CHD with blood-stasis syndrome and phlegm syndrome. Xuefu Zhuyu Decoction was used to randomly selected blood-stasis syndrome patient. The plasma samples of pre-treatment and post-treatment were collected. 1H-NMR and multivariate statistical analysis were used to analyze the changes of metabolites in patients with CHD blood-stasis syndrome before and after Xuefu Zhuyu Decoction treatment. RESULTS:A total of 15 potential biomarkers were identified in the plasma of patients with CHD blood-stasis syndrome, including 3-hydroxybutyrate (3-HB), lactate, alanine, glutamate, glutamine, pyruvate,phosphatidylcholine (PC), glycerylphosphorylcholine (GPC), glycine, glucose, phenylalanine, citrate,tyrosine, formate,very low density lipoprotein (VLDL). The levels of glucose, 3-HB, and VLDL increased, while the levels of other 12 metabolites decreased. A total of 16 potential biomarkers were identified in the plasma of patients with CHD phlegm syndrome, including valine, lactate, alanine, N-acetyl-β-glucosaminidase (NAG), glutamate, glutamine, pyruvate, creatine, choline, glycine, glucose, phenylalanine, citrate, histidine, tyrosine, and formate. The levels of glucose and choline increased, while the levels of other 12 metabolites decreased. After treatment with Xuefu Zhuyu Decoction, the levels of choline, phospholipids/glycerolipids, creatine, lipids, and citrate increased, while the level of lactate decreased in patients with CHD blood-stasis syndrome. CONCLUSIONS:1H-NMR combined with multivariate statistical method could effectively establish the diagnostic model for CHD blood-stasis syndrome and CHD phlegm syndrome, and find the metabolites related to the syndrome type. The metabolic mechanism of Xuefu Zhuyu Decoction on CHD blood-stasis syndrome may be associated with regulation of lipid metabolism and energy metabolism.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要