Biosorption mechanisms of Ag(I) and the synthesis of nanoparticles by the biomass from Botryosphaeria rhodina MAMB-05.

Journal of hazardous materials(2021)

Cited 10|Views6
No score
Abstract
Two biomass types of Botryosphaeria rhodina MAMB-05 (VMSM and M3) were evaluated to determine their effectiveness in removing Ag(I) ions from synthetic solutions. Both biomass types obtained good results in the biosorption process with maximum biosorption capacities (qm) for the Langmuir model of 34.67 and 39.23 mg Ag(I)/g dry biomass for M3 and VMSM, respectively. The biomass was characterized by X-ray microfluorescence and Fourier-transform-infrared spectroscopy (FT-IR). After the biosorption process, the mechanisms involved in biosorption were studied by FT-IR, X-ray diffraction (XRD), Field Emission Scanning Microscopy/Energy Dispersive X-ray Analysis (FESEM/EDX) and Ultraviolet-Visible Spectrophotometry. The results demonstrated the participation of various mechanisms in the retention of silver on biomass (bioadsorption, complexation, ion exchange, covalent bonding) that resulted in the formation of silver chloride nanoparticles (AgCl-NPs) and silver nanoparticles (AgNPs). The sizes of AgCl-NPs (chlorargyrite) according to the Debye-Scherrer equation were 19.29 nm (VMSM biomass) and 24.9 nm for the M3 type. For AgNPs the crystal size was between 1.5 and 0.8 nm for VMSM and M3 respectively. Furthermore, it was found that an undetermined fraction of the silver nanoparticles after biosorption remained in solution, which could be advantageous for their recovery.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined