Altered static and dynamic functional network connectivity in temporal lobe epilepsy with different disease duration and their relationships with attention

JOURNAL OF NEUROSCIENCE RESEARCH(2021)

引用 5|浏览12
暂无评分
摘要
The brain network alterations associated with temporal lobe epilepsy (TLE) progression are still unclear. The purpose of this study was to investigate altered patterns of static and dynamic functional network connectivity (sFNC and dFNC) in TLE with different durations of disease. In this study, 19 TLE patients with a disease duration of <= 5 years (TLE-SD), 24 TLE patients with a disease duration of >5 years (TLE-LD), and 21 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging and attention network test. We used group independent component analysis to determine the target resting-state networks. Sliding window correlation and k-means clustering analysis methods were used to obtain different dFNC states, temporal properties, and temporal variability. We then compared sFNC and dFNC between groups and found that compared with HCs, TLE-SD patients had increased sFNC between the dorsal attention network and sensorimotor network/visual network (VN), but decreased sFNC between the inferior-posterior default mode network and VN. In the strongly connected dFNC state, TLE-SD patients spent more time, had greater mean dwell time, and showed greater inconsistent abnormal network connectivity. There was a significant negative correlation between the temporal variability of auditory network- left fronto-parietal network connectivity and orienting effect. No significant differences in sFNC and dFNC were detected between TLE-LD and HC groups. These findings suggest that the damage and functional brain network abnormalities gradually occur in TLE patients after the onset of epilepsy, which might lead to functional network reorganization and compensatory remodeling as the disease progresses.
更多
查看译文
关键词
attention network test,dynamic functional network connectivity,resting-state functional magnetic resonance imaging,temporal lobe epilepsy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要