谷歌浏览器插件
订阅小程序
在清言上使用

Control of Fine Cutting Chips to Improve the Processing Environment in CFRP Drilling

INTERNATIONAL JOURNAL OF AUTOMATION TECHNOLOGY(2021)

引用 3|浏览1
暂无评分
摘要
Carbon fiber reinforced plastic (CFRP) is increasingly used in aerospace, automobile, and other industries. With the improvement of carbon fiber reinforced thermoplastic molding technology using thermoplastic resin, it is expected that the applications of CFRP will be expand further. Because of the following issues, CFRP is known as a difficult-to-cut material. i) Machining CFRP is difficult. ii) Its finished surface deteriorates due to delamination and uncut fiber. iii) It has a shortened tool life due to severe tool wear. In addition to these issues, we has been problem presentation of fine cutting chips generated by machining. Because these fine cutting chips may scatter in the atmosphere and adversely affect the human body and machine tools, we have established a chip disposal technology that suppresses these issues to improve the processing environment. A previous study reported that shape of the tool edge is responsible in suppressing the generation of fine cutting chips. Here, we experimentally investigated the effects of tool edge shapes on the chip collection rate and tool life. An attempt wasmade to determine whether the same effect can be obtained by using the outside dust-collection method which is known that the dust collection efficiency is low. We revealed that the chip collection rate increases if a tool that suppresses the generation of fine cutting chips is used instead of a conventional tool; furthermore, the tool life is insensitive to coating. In contrast, a comparison of our results with previous findings indicates that the tool with a sharpened cutting edge has a longer tool life than the conventional twist drill with honing. A high cutting chip collection rate was obtained, even with the outside dust-collection method, which led to an improvement in the working environment.
更多
查看译文
关键词
CFRP,drilling,chip disposal,tool edge,environmental issues
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要