Adipocyte-specific deletion of Depdc5 exacerbates insulin resistance and adipose tissue inflammation in mice.

Biochemical and biophysical research communications(2021)

引用 0|浏览2
暂无评分
摘要
The mammalian target of rapamycin complex 1 (mTORC1) is a crucial regulator of adipogenesis and systemic energy metabolism. Its dysregulation leads to a diversity of metabolic diseases, including obesity and type 2 diabetes. DEP-domain containing 5 (DEPDC5) is a critical component of GATOR1 complex that functions as a key inhibitor of mTORC1. So far, its function in adipose tissue remains largely unknown. Herein we evaluated how persistent mTORC1 activation in adipocyte via Depdc5 knockout modulates adiposity in vivo. Our data indicated that adipocyte-specific knockout of Depdc5 in aged mice led to reduced visceral fat, aggravated insulin resistance and enhanced adipose tissue inflammation. Moreover, we found that Depdc5 ablation resulted in upregulation of adipose triglyceride lipase (ATGL) in adipocytes and elevated levels of serum free fatty acids (FFAs). Intriguingly, rapamycin treatment did not reverse insulin resistance but alleviated adipose tissue inflammation caused by Depdc5 deletion. Taken together, our findings revealed that mTORC1 activation caused by Depdc5 deletion promotes lipolysis process and further exacerbates insulin resistance and adipose tissue inflammation in mice.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要