Single cell encapsulation in a Pickering emulsion stabilized by TiO2 nanoparticles provides protection against UV radiation for a biopesticide.

Colloids and surfaces. B, Biointerfaces(2021)

引用 16|浏览6
暂无评分
摘要
A new formulation for biological pest control with significant UV protection capability has been developed in this research. The formulation is based on individual encapsulation of fungal conidia in an oil/water Pickering emulsion. The droplets size of the emulsions was tuned to meet the demands of single conidia encapsulation in the oil droplets. The emulsions are stabilized by amine-functionalized TiO2 (titania) nanoparticles (NPs). The droplet size, stability, and structure of the emulsions were investigated at different TiO2 contents and oil/water phase ratios. Most of the emulsions remained stable for 6 months. The structural properties of the Pickering emulsions were characterized by confocal microscopy and high-resolution cryogenic scanning electron microscopy (cryo-HRSEM). The presence of the TiO2 particles at the interface was confirmed by both confocal microscopy and cryo-HRSEM. Metarhizium brunneum-7 (Mb7) conidia were added to the emulsions. The successful encapsulation of individual conidia in the oil droplets was confirmed by confocal microscopy. The individual encapsulation of the conidia in the emulsions was significantly improved by dispersing the conidia in a 0.02 % Triton X-100 solution prior to emulsification. In addition, the bioassay results have shown, that exposure of the encapsulated conidia to natural UV light did not change their germination rates, however, the unprotected conidia demonstrated a dramatic decrease in their germination rates. These results confirm the UV protection capability of the studied emulsions.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要