Study of the effects of rabbit scleral fibroblasts on cellular biomechanical properties and MMP-2 expression using two modes of riboflavin/ultraviolet A wave collagen cross-linking.

Experimental eye research(2021)

Cited 1|Views2
No score
Abstract
OBJECTIVE:The aim of this study is to evaluate the cellular biomechanical properties and MMP-2 expression changes in rabbit scleral fibroblasts using two modes of riboflavin and ultraviolet A (UVA) collagen cross-linking (CXL). METHODS:Twenty-four New Zealand white rabbits were randomly divided into two groups, A and B. The left eye was chosen for the experimental group and the right eye for the control group. In group A, the eyes were irradiated for 30 min, with a power density of 3.0 mW/cm2. In group B, the eyes were irradiated for 9 min, with a power density of 10.0 mW/cm2. One week after CXL, full-field electroretinography was performed. Sixty days after CXL, the rabbits were sacrificed, and scleral fibroblasts were extracted from the CXL-treated sclera area and corresponding parts of control sclera and cultured. Cellular biomechanical properties were evaluated using the micropipette aspiration technique, and the MMP-2 protein expression was determined by Western blot analysis. RESULTS:There was no statistical difference in the amplitude and latency of the dark adaptation 3.0 and light adaptation 3.0 between the CXL and control eyes of groups A and B (P > 0.05). Compared with the control groups, the Young's modulus of the fibroblasts and apparent viscosity of the experimental eyes in groups A and B were increased after CXL (P < 0.05), but there was no significant difference between the two groups under different irradiation modes (P > 0.05). The MMP-2 expression in scleral fibroblasts from experimental eyes was significantly higher than that in scleral fibroblasts from control eyes in groups A and B. Under the two different irradiation modes, the MMP-2 expression in the scleral fibroblasts from experimental eyes in group A was significantly higher than that in the scleral fibroblasts from experimental eyes in group B. CONCLUSION:The riboflavin-UVA scleral CXL conducted in two different modes produced no significant side effects on the retina and could strengthen the cell biomechanical properties as well as increase the MMP-2 expression of scleral fibroblasts significantly.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined