An engineered genetic circuit for lactose intolerance alleviation

BMC BIOLOGY(2021)

引用 4|浏览20
暂无评分
摘要
Background Lactose malabsorption occurs in around 68% of the world’s population, causing lactose intolerance (LI) symptoms, such as abdominal pain, bloating, and diarrhea. To alleviate LI, previous studies have mainly focused on strengthening intestinal β-galactosidase activity while neglecting the inconspicuous drop in the colon pH caused by the fermentation of non-hydrolyzed lactose by the gut microbes. A drop in colon pH will reduce the intestinal β-galactosidase activity and influence intestinal homeostasis. Results Here, we synthesized a tri-stable-switch circuit equipped with high β-galactosidase activity and pH rescue ability. This circuit can switch in functionality between the expression of β-galactosidase and expression of L-lactate dehydrogenase in response to an intestinal lactose signal and intestinal pH signal, respectively. We confirmed that the circuit functionality was efficient in bacterial cultures at a range of pH levels, and in preventing a drop in pH and β-galactosidase activity after lactose administration to mice. An impact of the circuit on gut microbiota composition was also indicated. Conclusions Due to its ability to flexibly adapt to environmental variation, in particular to stabilize colon pH and maintain β-galactosidase activity after lactose influx, the tri-stable-switch circuit can serve as a promising prototype for the relief of lactose intolerance.
更多
查看译文
关键词
Lactose intolerance, Genetic engineering, Synthetic biology, Gut microbiota, In vitro simulation, In vivo assessment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要